Add like
Add dislike
Add to saved papers

Symmetric Ultrafast Writing and Erasing Speeds in Quasi-Nonvolatile Memory via van der Waals Heterostructures.

Advanced Materials 2019 January 29
Due to the large gap in timescale between volatile memory and nonvolatile memory technologies, quasi-nonvolatile memory based on 2D materials has become a viable technology for filling the gap. By exploiting the elaborate energy band structure of 2D materials, a quasi-nonvolatile memory with symmetric ultrafast write-1 and erase-0 speeds and long refresh time is reported. Featuring the 2D semifloating gate architecture, an extrinsic p-n junction is used to charge or discharge the floating gate. Owing to the direct injection or recombination of charges from the floating gate electrode, the erasing speed is greatly enhanced to nanosecond timescale. Combined with the ultrafast write-1 speed, symmetric ultrafast operations on the nanosecond timescale are achieved, which are ≈106 times faster than other memories based on 2D materials. In addition, the refresh time after a write-1 operation is 219 times longer than that of dynamic random access memory. This performance suggests that quasi-nonvolatile memory has great potential to decrease power consumption originating from frequent refresh operations, and usher in the next generation of high-speed and low-power memory technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app