Add like
Add dislike
Add to saved papers

Principles of the animal molecular clock learned from Neurospora.

Study of Neurospora, a model system evolutionarily related to animals and sharing a circadian system having nearly identical regulatory architecture to that of animals, has advanced our understanding of all circadian rhythms. Work on the molecular bases of the Oscillator began in Neurospora before any clock genes were cloned and provided the second example of a clock gene, frq, as well as the first direct experimental proof that the core of the Oscillator was built around a transcriptional translational negative feedback loop (TTFL). Proof that FRQ was a clock component provided the basis for understanding how light resets the clock, and this in turn provided the generally accepted understanding for how light resets all animal and fungal clocks. Experiments probing the mechanism of light resetting led to the first identification of a heterodimeric transcriptional activator as the positive element in a circadian feedback loop, and to the general description of the fungal/animal clock as a single step TTFL. The common means through which DNA damage impacts the Oscillator in fungi and animals was first described in Neurospora. Lastly, the systematic study of Output was pioneered in Neurospora, providing the vocabulary and conceptual framework for understanding how Output works in all cells. This model system has contributed to the current appreciation of the role of Intrinsic Disorder in clock proteins and to the documentation of the essential roles of protein post-translational modification, as distinct from turnover, in building a circadian clock. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app