Add like
Add dislike
Add to saved papers

Optimal controller synthesis for second order time delay systems with at least one RHP pole.

ISA Transactions 2018 Februrary
An optimal H2 minimization framework is proposed in this paper for devising a controller of PID in nature, based on a refined IMC filter configuration. The tuning strategy is for controlling time delay system with at least one pole which falls on the right half of the s-plane. An underdamped model based filter is used in place of the unity damping ratio (critically damped) filter available in the literature to improve the reset action. The method has a single adjustable closed loop tuning parameter. Guidelines have been provided for choosing the pertinent tuning parameter based on the sensitivity function. Simulation work has been executed on diverse unstable models to support the advantages of the proposed scheme. The proposed controller yields improved performances over other recently reported tuning techniques in the literature. Experimental implementation is carried out on an inverted pendulum for demonstrating the practical applicability of the present method. The efficacy of the intended controller design is quantitatively analyzed using the time integral performance index.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app