JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Growth Hormone Response to Oral Glucose Load: From Normal to Pathological Conditions.

The exact physiological basis of acute growth hormone (GH) suppression by oral glucose is not fully understood. Glucose-mediated increase in hypothalamic somatostatin seems to be the most plausible explanation. Attempts to better understand its underlying mechanisms are compromised by species disparities in the response of GH to glucose load. While in humans, glucose inhibits GH release, the acute elevation of circulating glucose levels in rats has either no effect on GH secretion or may be stimulatory. Likewise, chronic hyperglycemia alters GH release in both humans and rats nonetheless in opposite directions. Several factors influence nadir GH concentrations including, age, gender, body mass index, pubertal age, and the type of assay used. Besides the classical suppressive effects of glucose on GH release, a paradoxical GH increase to oral glucose may be observed in around one third of patients with acromegaly as well as in various other disorders. Though its pathophysiology is poorly characterized, an altered interplay between somatostatin and GH-releasing hormone has been suggested and a link with pituitary ectopic expression of glucose-dependent insulinotropic polypeptide receptor has been recently demonstrated. A better understanding of the dynamics mediating GH response to glucose may allow a more optimal use of the OGTT as a diagnostic tool in various conditions, especially acromegaly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app