Add like
Add dislike
Add to saved papers

A novel nanocomposite of Liquidambar styraciflua fruit biochar-crosslinked-nanosilica for uranyl removal from water.

Biochar adsorption has been protruded as a sustainable green and economic process for water remediation. This technology is facing high challenges in removing different pollutants, owning to the stable chemical and physical features of biochar. Therefore, a novel nanocomposite of Liquidambar styraciflua fruit biochar-crosslinked-nanosilica (BC-Gl-NSi) was synthesized and characterized (surface area = 60.754 m2  g-1 and particle size = 17.32-36.25 nm). The designed BC-Gl-NSi nanocomposite was explored for removal of uranyl ions by the batch adsorption technique under the influence of different factors including temperature, contact time, nanocomposite dosage, pH, uranyl ion concentration as well as co-existing ions. The adsorption process was principally confirmed to rely on the solution pH and reached 86.3% in pH 4.0. The results showed also that one-minute contact duration was sufficient to reach the maximum extraction of uranyl (30.0 mg L-1 ). Besides, [BC-Gl-NSi] exhibited excellent selectivity and good recovery of uranyl ions with other competing ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app