Add like
Add dislike
Add to saved papers

Antiviral activity spectrum of phenoxazine nucleoside derivatives.

Antiviral Research 2019 January 24
The phenoxazine scaffold is widely used to stabilize nucleic acid duplexes, as a part of fluorescent probes for the study of nucleic acid structure, recognition, and metabolism etc. Here we present the synthesis of phenoxazine-based nucleoside derivatives and their antiviral activity against a panel of structurally diverse viruses: enveloped DNA herpesviruses varicella zoster virus (VZV) and human cytomegalovirus, enveloped RNA tick-borne encephalitis virus (TBEV), and non-enveloped RNA enteroviruses. Studied compounds were effective against DNA and RNA viruses reproduction in cell culture. 3-(2'-Deoxy-β-D-ribofuranosyl)-1,3-diaza-2-oxophenoxazine proved to be a potent inhibitor of VZV replication with superior activity against wild type than thymidine kinase deficient strains (EC50 0.06 and 10 μM, respectively). This compound did not show cytotoxicity on all the studied cell lines. Several compounds showed promising activity against TBEV (EC50 0.35-0.91 μM), but the activity was accompanied with pronounced cytotoxicity. These compounds may be considered as a good starting point for further structure optimization as antiherpesviral or antiflaviviral compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app