Add like
Add dislike
Add to saved papers

Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer's disease.

Aging 2019 January 27
Geniposide, an iridoid glycoside extract from the gardenia fruit, is used in traditional Chinese medicine to alleviate symptoms of liver and inflammatory diseases. Geniposide activates GLP-1 receptors, known to modulate the activity of mechanistic target of rapamycin (mTOR), a key kinase regulating energy balance, proliferation, and survival in cells. mTOR activation inhibits autophagy, which is often disrupted in age-related diseases. Modulation of mTOR function to increase autophagy and inhibit apoptosis is involved in the protective effects of pharmacologic agents targeting diabetes and Alzheimer's disease (AD). We investigated whether such mechanism could mediate geniposide's neuroprotective effects in the APP/PS1 mouse model of AD. Eight-week treatment with geniposide improved cognitive scores in behavioral tests, reduced amyloid-β 1-40 plaque deposition, and reduced soluble Aβ1-40 and Aβ1-42 levels in the APP/PS1 mouse brain.This also showed increased p-Akt/Akt, p-mTOR/mTOR and decreased p-4E-BP1/4E-BP1 expression, and these patterns were partially reversed by geniposide. Evidence for enhanced autophagy, denoted by increased expression of LC3-II and Beclin1, was also seen after treatment with geniposide. Our data suggests that down regulation of mTOR signaling, leading to enhanced autophagy and lysosomal clearance of Aβ fibrils, underlies the beneficial effects of geniposide against neuropathological damage and cognitive deficits characteristic of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app