Add like
Add dislike
Add to saved papers

Fabrication of Organic Hec Nanocomposites Modified with Lysine as a Potential Adsorbent for Bilirubin Removal.

As one of the typical phyllosilicate clays, hectorite (Hec) has some excellent characteristics and has been greatly applied in adsorption field for the removal of dye, endotoxin, etc. In this study, organic Hec nanocomposites modified with L-Lysine (Lys/Hec NCs) were prepared via solution intercalation method for BR removal. The effects of ionic strength, pH values, initial concentration of BR, and BSA concentration on the adsorption capacity for BR of Lys/Hec NCs were investigated. Results indicated that the adsorption capacity for BR of nanocomposites could reach 40 mg/g when the initial bilirubin concentration was 200 mg/L. However, the adsorption amount of Lys/Hec NCs decreased with increasing the concentration of BSA, but Lys/Hec NCs could still maintain a higher adsorption rate. The adsorption kinetics and adsorption isotherms indicated that the adsorption process of Lys/Hec NCs agreed well with the pseudo-second-order model and the Langmuir isotherm, respectively. Moreover, Lys/Hec NCs also exhibited excellent cytocompatibility. These obtained results demonstrate that Lys/Hec NCs prepared in this study had great potential to be used in hemoperfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app