Add like
Add dislike
Add to saved papers

Changes in the Active, Dead, and Dormant Microbial Community Structure Across a Pleistocene Permafrost Chronosequence.

Permafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods such as metagenomic and 16S rRNA gene sequencing. However, these methods do not distinguish between active, dead, and dormant cells. This is of particular concern in ancient permafrost where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this we applied: (i) live/dead differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19 thousand years (K), 27K, and 33K). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of class Bacilli were more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of Clostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous 'relic' DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provides insights into the survival of microbial communities in ancient permafrost. IMPORTANCE Permafrost soils store more than half earth's soil carbon despite covering ∼15% of the land area (Tarnocai C et al. 2009. Global Biogeochemical Cycles 23:2. doi: 10.1029/2008GB003327). This permafrost carbon is rapidly degraded following thaw (Schuur EAG et al. 2015. Nature. 520:171-179.). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling post thaw. Permafrost is also an analog for frozen extraterrestrial environments and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app