Add like
Add dislike
Add to saved papers

Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells.

BACKGROUND: Exosomes are considered key elements for communication between cells, but very little is known about the mechanisms and selectivity of the transference processes involving exosomes released from different cells.

RESULTS: In this study we have investigated the transfer of hollow gold nanoparticles (HGNs) between different cells when these HGNs were loaded within exosomes secreted by human placental mesenchymal stem cells (MSCs). These HGNs were successfully incorporated in the MSCs exosome biogenesis pathway and released as HGNs-loaded exosomes. Time-lapse microscopy and atomic emission spectroscopy allowed us to demonstrate the selective transfer of the secreted exosomes only to the cell type of origin when studying different cell types including cancer, metastatic, stem or immunological cells.

CONCLUSIONS: In this study we demonstrate the selectivity of in vitro exosomal transfer between certain cell types and how this phenomenon can be exploited to develop new specific vectors for advanced therapies. Specifically, we show how this preferential uptake can be leveraged to selectively induce cell death by light-induced hyperthermia only in cells of the same type as those producing the corresponding loaded exosomes. We describe how the exosomes are preferentially transferred to some cell types but not to others, thus providing a better understanding to design selective therapies for different diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app