JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Evolving complexity of MIF signaling.

Macrophage migration inhibitory factor (MIF) is a cytokine expressed in various cell types, including hematopoietic, epithelial, endothelial, mesenchymal and neuronal cells. Altered MIF expression has been associated with a multitude of diseases ranging from inflammatory disorders like sepsis, lupus and rheumatoid arthritis to organ pathologies such as heart failure, myocardial infarction, acute kidney injury, organ fibrosis and a number of malignancies. The implication of MIF in these diseases was supported by numerous animal studies. MIF acts in an autocrine and paracrine manner via binding and activating the receptors CD74/CD44, CXCR2, CXCR4 and CXCR7. Upon receptor binding, several downstream signaling pathways were shown to be activated in vivo, including ERK1/2, AMPK and AKT. Expression of MIF receptors is not uniform in various cells, resulting in differential responses to MIF across various tissues and pathologies. Within cells, MIF can directly bind and interact with intracellular proteins, such as the constitutive photomorphogenic-9 (COP9) signalosome subunit 5 (CSN5), p53 or thioredoxin-interacting protein (TXNIP). D-dopachrome tautomerase (D-DT or MIF-2) was recognized to be a structural and functional homolog of MIF, which could exert overlapping effects, raising further the complexity of canonical MIF signaling pathways. Here, we provide an overview of the expression and regulation of MIF, D-DT and their receptors. We also discuss the downstream signaling pathways regulated by MIF/D-DT and their pathological roles in different tissue, particularly in the heart and the kidney.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app