Add like
Add dislike
Add to saved papers

Contributions of reactive oxygen species, oxidative DNA damage and glutathione depletion on the sensitivity of Acinetobacter baumannii to 2-(2-nitrovinyl) furan.

Microbial Pathogenesis 2019 January 23
2-(2-nitrovinyl) furan is a broad-spectrum antibacterial agent with activity against Gram-positive and Gram-negative bacteria. In this study, the contributions of reactive oxygen species, oxidative DNA damage and glutathione depletion on its activity against Acinetobacter baumannii was investigated. Inactivation of sodB, katG and recA lowered the minimum inhibitory concentration of 2-(2-nitrovinyl) furan. Furthermore, the inactivation increased the superoxide anion radical and hydrogen peroxide contents of 2-(2-nitrovinyl) furan-treated A. baumannii. Antioxidant (thiourea) reversed the elevated levels of superoxide anion radical and hydrogen peroxide. In addition, thiourea lowered the susceptibility of A. baumannii to 2-(2-nitrovinyl) furan. 2-(2-nitrovinyl) furan depleted reduced glutathione (GSH) contents of parental, sodB, katG and recA strains of A. baumannii. NAD+/NADH ratio parental, sodB, katG and recA strains of A. baumannii exposed to 2-(2-nitrovinyl) furan increased significantly. Inactivation of type-I NADH dehydrogenase lowered the reactive oxygen species generation in 2-(2-nitrovinyl) furan-treated A. baumannii. It is evident from this study that 2-(2-nitrovinyl) furan stimulates respiratory chain activity of A. baumannii leading to enhanced ROS generation, which depletes GSH and reacts with Fe2+ to produce hydroxyl radical that damage DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app