Add like
Add dislike
Add to saved papers

Emergent Structure-dependent Relaxation Spectra in Viscoelastic Fiber Networks in Extension.

Acta Biomaterialia 2019 January 23
Viscoelasticity plays an important role in the mechanical behavior of biological tissues undergoing dynamic loading. Exploring viscoelastic relaxation spectra of the tissue is essential for predicting its mechanical response. Most load-bearing tissues, however, are also composed of networks of intertwined fibers and filaments of, e.g., collagen, elastin. In this work, we show how non-affine deformations within fiber networks affect the relaxation behavior of the material leading to the emergence of structure-dependent time scales in the relaxation spectra. In particular, we see two different contributions to the network relaxation process: a material contribution due to the intrinsic viscoelasticity of the fibers, and a kinematic contribution due to non-affine rearrangement of the network when different fibers relax at different rates. We also present a computational model to simulate viscoelastic relaxation of networks, demonstrating the emergent time scales and a pronounced dependence of the network relaxation behavior on whether components with different relaxation times percolate the network. Finally, we observe that the simulated relaxation spectrum for Delaunay networks is comparable to that measured experimentally for reconstituted collagen gels by others. STATEMENT OF SIGNIFICANCE: Viscoelasticty plays an important role in the mechanical behavior of biological tissues undergoing dynamic loading. Stress relaxation tests provide a convenient way to explore the viscoelastic behavior of the material, while providing an advantage of interrogating multiple time scales in a single experiment. Most load bearing tissues, however, are composed of networks of intertwined fibers and filaments. In the present study, we analyze how the network structure can affect the viscoelastic relaxation behavior of a tissue leading to the emergence of structure-based time scales in the relaxation spectra.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app