Add like
Add dislike
Add to saved papers

Isoniazid induces a monocytic-like phenotype in HL-60 cells.

Isoniazid (INH) is one of the oldest drugs for the treatment of tuberculosis (TB) and is of continual clinical and research interest. The aim of the current study is to investigate the ability of INH to induce monocyte differentiation and the underlying signaling pathway involved in this phenomenon using HL-60 cells. In this study, HL-60 cells were treated with different non-cytotoxic concentrations of INH or vitamin D (a well-known inducer of monocytic differentiation) to determine key functional changes in the phenotype of these cells using several biochemical and cytobiological experiments. HL-60 cells are derived from human promyelocytic leukemia and bear some resemblance to promyelocytes, which differentiate into various cell types. INH-induced differentiation was confirmed to occur in a concentration-dependent manner through several functional markers such as nonspecific esterase activity, NADPH oxidase activity and expression of surface markers CD14 and CD16 (characteristic of monocytes). INH-induced monocytic-like differentiation in HL-60 cells and demonstrated that at least 25% of cells were differentiated within the range of the pharmacological concentrations of INH. To determine the effects of INH on HL-60 cells, we applied quantitative proteomics that revealed 32 proteins were altered significantly in pathways that could involve in the differentiation signals. Lastly, INH activated the ERK-1/MAPK signaling pathway based on detection of phosphorylated ERK-1. These in vitro findings in HL-60 cells warrant further study using promyelocytes or hematopoietic stem cells to evaluate the physiological capability of INH to induce monocytic differentiation that may aid in host defense against TB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app