Add like
Add dislike
Add to saved papers

Engineering of Bone- and CD44-Dual-Targeting Redox-Sensitive Liposomes for the Treatment of Orthotopic Osteosarcoma.

This study aimed to develop an efficient step-by-step osteosarcoma (OS)-targeting liposome system functionalized with a redox-cleavable, bone- and cluster of differentiation 44 (CD44)-dual-targeting polymer. Furthermore, the effect of coadministration of a tumor-penetrating peptide, internalizing-RGD (iRGD), was investigated. First, a bone-targeting moiety, alendronate (ALN), was conjugated with hyaluronic acid (HA), a ligand for CD44. This ALN-HA conjugate was coupled with DSPE-PEG2000-COOH through a bioreducible disulfide linker (-SS-) to obtain a functionalized lipid, ALN-HA-SS-L, to be post-inserted into preformed liposomes loaded with doxorubicin (DOX). The roles of ALN, HA and the redox-sensitivity of the ALN-HA-SS-L liposomes (ALN-HA-SS-L-L) in the anti-osteosarcoma effect were critically evaluated against various reference liposomal formulations (with only ALN, HA or redox sensitivity). ALN-HA-SS-L-L displayed a zeta potential of -26.07±0.32 mV and selectively disassembled in the presence of a reducing agent, 10 mM glutathione (GSH), which can be found in cancer cells. Compared to various reference liposomes, ALN-HA-SS-L-L/DOX had significantly higher cytotoxicity to human OS MG-63 cells alongside high and rapid cellular uptake. In the orthotopic OS nude mouse models, ALN-HA-SS-L-L/DOX showed remarkable tumor growth suppression and prolonged survival time. This result was further improved by the coadministration of iRGD. The antitumor effects of various liposomes were ranked in the same order as the degree of tumor biodistribution shown by in vivo/ex vivo imaging: ALN-HA-SS-L-L coadministered with iRGD > ALN-HA-SS-L-L > HA-SS-L-L > HA-L-L > PEG-L> free drug. ALN-HA-SS-L-L/DOX also reduced the cardiotoxicity of DOX and lung metastases. Overall, this study demonstrated that ALN-HA-SS-L-L/DOX, equipped with bone- and CD44-dual-targeting abilities and redox sensitivity, could be a promising OS-targeted therapy. The efficacy could also be augmented by coadministration of iRGD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app