Add like
Add dislike
Add to saved papers

Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia.

High-altitude intolerance, and consequently high-altitude sickness is difficult to predict. Liver is essential organ in glucose and lipid metabolism, and may play key role in the adaptation to high altitude. In response to extreme high altitude, mitochondrial respiration exhibits changes in substrate metabolism, mitochondrial electron transport chain activity and respiratory coupling. We determined the cobalt chloride (CoCl2) effects on liver mitochondrial plasticity and oxygen uptake in rats with low (LR) and high (HR) resistance to extreme hypobaric hypoxia. The polarographic method proposed by Chance and Williams was used as a simple and effective tool to trace mitochondrial functionality and oxygen consumption. HR rats had more efficient processes of NADH- and FAD- generated mitochondrial oxidation. CoCl2 promoted more efficient NADH-generated and diminished less efficient FAD-generated mitochondrial respiratory reactions in HR rats. CoCl2 diminished both aerobic and anaerobic processes in LR rats. Glutamate and pyruvate substrates of NADH-generated mitochondrial pathways were highly affected by CoCl2. Red blood cells acted as cobalt depots in HR and LR rats. We have unveiled several mechanisms leading to differentiated mitochondrial respiratory responses to hypobaric hypoxia in LR and HR rats. Our study strongly supports the existence of adaptive liver mitochondrial plasticity to extreme hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app