Add like
Add dislike
Add to saved papers

Nebulized Inhalation of Anti-Nerve Growth Factor Microspheres Inhibits Airway Remodeling in an Ovalbumin-Induced Rat Asthma Model.

BACKGROUND: Airway remodeling is considered an important factor in refractory and uncontrollable asthma. Previous studies have confirmed that anti-nerve growth factor (NGF) antibody can ameliorate airway remodeling. However, whether nebulized inhalation of anti-NGF microspheres (NANM) can inhibit airway remodeling is not clear. The purpose of this study was to investigate the effects of NANM on ovalbumin (OVA)-induced airway remodeling, and the mechanisms involved.

METHODS: Anti-NGF microspheres were produced using a polymer alloy method. OVA was used to establish a rat model of asthma airway remodeling. Rats were treated with inhalation atomized anti-NGF antibody or NANM. Airway inflammation, airway reactivity, and airway remodeling were measured. Lung tissue P-Smad3 and tumor growth factor (TGF)-β1 mRNA and protein expression were also measured.

RESULTS: The anti-NGF antibody microsphere encapsulation rate was high, and the release time was long. NANM markedly attenuated OVA-induced airway remodeling, such as collagen deposition, average pulmonary resistance, the WAm/Pbm, WAt/Pbm, and Wcol/Pbm ratios (WAt, bronchial wall area; Pbm, perimeter of basement membrane; WAm, smooth muscle wall area; Wcol, airway collagen fiber area). Compared with the anti-NGF antibody group and the OVA group, the expression of TGF-β1 mRNA, TGF-β1 protein, and P-Smad3 in the NANM group were markedly decreased.

CONCLUSIONS: NANM ameliorated OVA-induced airway remodeling, partly through regulation of the TGF-β1 /Smad3 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app