Add like
Add dislike
Add to saved papers

Overexpression of augmenter of liver regeneration (ALR) mitigates the effect of H 2 O 2 -induced endoplasmic reticulum stress in renal tubule epithelial cells.

Ischemia/reperfusion is a major cause of acute kidney injury and can induce apoptosis in renal epithelial tubule (HK-2) cells. Accumulating evidence indicates that endoplasmic reticulum (ER) stress is a major contributor to apoptosis in acute kidney injury. We previously reported that augmenter of liver regeneration (ALR) functions as an anti-apoptotic factor in H2 O2 -treated HK-2 cells although the precise mechanism underlying this action remains unclear. In the present study, we investigate the role of ALR in H2 O2 -induced ER stress-mediated apoptosis. We overexpressed ALR and established a H2 O2 -induced ER stress model in HK-2 cells. Overexpression of ALR reduced the level of reactive oxygen species and the rate of apoptosis in H2 O2 -treated HK-2 cells. Using confocal microscopy and western blot, we observed that ALR colocalized with the ER and mitochondria compartment. Moreover, ALR suppressed ER stress by maintaining the morphology of the ER and reducing the levels of the ER-related proteins, glucose-regulated protein 78 (GRP78), phospho-protein kinase-like ER kinase (p-PERK), phospho-eukaryotic initiation factor 2α (p-eIF2α) and C/EBP-homologous protein (CHOP) significantly (p < 0.05). Mechanistically, ALR promoted Bcl-2 expression and suppressed Bax and cleaved-caspase-3 expression significantly during ER-stress induced apoptosis (p < 0.05). Furthermore, ALR attenuated calcium release from the ER, and transfer to mitochondria, under ER stress. To conclude, ALR alleviates H2 O2 -induced ER stress-mediated apoptosis in HK-2 cells by suppressing ER stress response and by maintaining calcium homeostasis. Consequently, ALR may protect renal tubule epithelial cells from ischemia/reperfusion induced acute kidney injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app