Add like
Add dislike
Add to saved papers

Biodegradable bioadhesive nanoparticle incorporation of broad-spectrum organic sunscreen agents.

Conventional emulsion-based sunscreen formulations are limited by postapplication epicutaneous penetration that increases the risk of allergic dermatitis, cellular damage, and filter photodegradation upon ultraviolet radiation (UVR) exposure. Encapsulation of the UVB filter padimate O within bioadhesive biodegradable nanoparticles (BNPs) composed of poly(d,l-lactic acid)-hyperbranched polyglycerol was previously shown to enhance UVR protection while preventing skin absorption. Herein, we assess the capacity of BNP co-incorporation of avobenzone and octocrylene to provide broad-spectrum UVR protection. The ratio of UV filters within nanoparticles (NPs) was optimized for filter-filter stabilization upon UV irradiation and maximum drug loading. In vitro water-resistance test showed significant particle retention at 85% over 3 hr. In a pilot clinical study, protection against UVR-induced erythema of BNPs was found to be comparable to the FDA standard P2. Thus, sunscreen formulations utilizing BNP incorporation of a combination of organic filters may offer key safety and performance advantages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app