Add like
Add dislike
Add to saved papers

The design strategy of intelligent biomedical magnesium with controlled-release platform.

Magnesium has a very promising adhibition in biomedical field for its excellent mechanical and biodegradable properties, however, the intelligent applications of biomedical magnesium developed difficultly due to its characteristic degradation. A intelligent biomedical magnesium was constructed on magnesium (Mg) surface by incorporating polydopamine (PD) and mechanized hollow mesoporous silica nanoparticles (HMSs) as smart delivery platform nanocontainers. The supramolecular nanovalves of mechanized HMSs consisted of alginate/chitosan multilayers by self-assembly, which are capable of entrapping rhodamine 6G in the mesopores and can release the cargo under the chemical environment of alkali or Mg iron stimuli that correspond to the degradation of biomedical Mg. The alkali/Mg2+ dual stimuli-responsive release property of the HMSs endows the biodegradable Mg with controlled release potential. The well-designed smart delivery nanocontainers were combined with polydopamine deposited on Mg for excellent adhesion properties and positively charged amino group of PD. Furthermore, when the biomedical Mg with these mechanized HMSs was degraded in the simulated body environment, the alkali/Mg2+ -triggered release of cargos from this smart delivery platform could bring a more functional application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app