Add like
Add dislike
Add to saved papers

A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles.

HYPOTHESIS: Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles. The use of mixed micelles of PEO-PPO-PEO copolymers and a negatively charged bile salt should favour the solubilization of DX in the apolar core region of the micelles.

EXPERIMENTS: We studied the DX uptake in the micellar systems formed by sodium cholate (NaC) and the PEO100 PPO65 PEO100 (F127) copolymer, prepared with different mole ratios (MR = nNaC /nF127 ) in the range 0 ÷ 1. The systems were characterized by small angle X-ray scattering (SAXS) and dynamic light scattering (DLS); DX encapsulation was followed by steady-state and time-resolved fluorescence spectroscopy.

FINDINGS: The successful solubilization of DX in the host micellar systems did not affect their structure, as evidenced by both SAXS and DLS data. In the presence of NaC, DX experiences a more apolar environment as indicated by its characteristic fluorescent behaviour. The almost complete uptake of the drug occurred shortly after the sample preparation; however, time resolved fluorescence revealed a slow partition of DX between corona and core regions of the micelles. DX degradation in the mixed micellar systems was markedly reduced relative to aqueous DX solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app