JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1.

AIMS: This study investigated the mechanism through which fibroblast growth factor 21 (FGF21) protects against angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction.

METHODS: Male silent information regulator 1 (SIRT1) flox/flox and cardiomyocyte-specific inducible SIRT1 knockout mice (SIRT1-iKO) were generated and treated with Ang II (1.1 mg/kg/day for 4 weeks) at the age of 8-12-week-old. FGF21 treatment [2.5 mg/kg/day for 4 weeks by intraperitoneal (i.p.) injection] was initiated at the same time as the Ang II infusion. For in vitro studies, neonatal rat cardiomyocytes (NRCMs), H9c2 rat cardiomyocytes and isolated adult mouse cardiomyocytes were treated with Ang II (1 μM) and FGF21 (20 nM) for 24 h with or without SIRT1 silencing.

RESULTS: FGF21 treatment significantly attenuated Ang II-induced cardiac hypertrophy and dysfunction. SIRT1 knockout abolished the ability of FGF21 to prevent Ang II-induced cardiac hypertrophy, fibrosis, and apoptosis, without affecting the beneficial effects of FGF21 in Ang II-induced hypertension, and did not influence the hypertension itself. FGF21 markedly increased the deacetylase activity of SIRT1 and promoted the interaction of SIRT1 with liver kinase B1 (LKB1) and forkhead box protein O1 (FoxO1), resulting in decreased acetylation of these SIRT1 target proteins. Consequently, FGF21 promoted the activation of the LKB1 target adenosine monophosphate-activated protein kinase (AMPK) and altered the transcriptional activity of FoxO1 on its downstream target genes catalase (Cat), MnSOD (Sod2), and Bim, resulting in reduced reactive oxygen species (ROS) accumulation and cardiomyocyte apoptosis.

CONCLUSIONS: FGF21 improves cardiac function and alleviates Ang II-induced cardiac hypertrophy in a SIRT1-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app