Add like
Add dislike
Add to saved papers

Improving Prediction Performance Using Hierarchical Analysis of Real-Time Data: A Sepsis Case Study.

This paper presents a novel method for hierarchical analysis of machine learning algorithms to improve predictions of at risk patients, thus further enabling prompt therapy. Specifically, we develop a multi-layer machine learning approach to analyze continuous, high-frequency data. We illustrate the capabilities of this approach for early identification of patients at risk of sepsis, a potentially life-threatening complication of an infection, using high-frequency (minute-by-minute) physiological data collected from bedside monitors. In our analysis of a cohort of 586 patients, the model obtained from analyzing the output of a previously developed sepsis prediction model resulted in improved outcomes. Specifically, the original model failed to predict 11.76 ± 4.26% of sepsis patients earlier than Systemic Inflammatory Response Syndrome (SIRS) criteria, commonly used to identify patients at risk for rapid physiological deterioration resulting from sepsis. In contrast, the multi-layer model only failed to predict 3.21 ± 3.11% of sepsis patients earlier than SIRS. In addition, sepsis patients were predicted on average 204.87 ± 7.90 minutes earlier than SIRS criteria using the multi-layer model, which can potentially help reduce mortality and morbidity if implemented in the ICU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app