Add like
Add dislike
Add to saved papers

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation.

We investigate two crucial and closely related aspects of CNNs for optical flow estimation: models and training. First, we design a compact but effective CNN model, called PWC-Net, according to simple and well-established principles: pyramidal processing, warping, and cost volume processing. PWC-Net is 17 times smaller in size, 2 times faster in inference, and 11% more accurate on Sintel final than the recent FlowNet2 model. It is the winning entry in the optical flow competition of the robust vision challenge. Next, we experimentally analyze the sources of our performance gains. In particular, we use the same training procedure of PWC-Net to retrain FlowNetC, a sub-network of FlowNet2. The retrained FlowNetC is 56% more accurate on Sintel final than the previously trained one and even 5% more accurate than the FlowNet2 model. We further improve the training procedure and increase the accuracy of PWC-Net on Sintel by 10% and on KITTI 2012 and 2015 by 20%. Our newly trained model parameters and training protocols are available on https://github.com/NVlabs/PWC-Net.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app