Add like
Add dislike
Add to saved papers

Enhanced Delivery of F - , Ca 2+ , K + , and Na + Ions into Enamel by Electrokinetic Flows.

As the outermost layer of the tooth crown, dental enamel is the most mineralized tissue in mammals, consisting of hydroxyapatite crystallites separated by long and narrow nanochannels. A major challenge in dentistry is how various molecules can be infiltrated into these nanopores in an efficient and controlled way. Here we show a robust method to transport various ions of interest, such as fluoride (F- ), potassium (K+ ), calcium (Ca++ ), and sodium (Na+ ), into these nanopores by electrokinetic flows. It is verified by fluorescence microscopy, laser-scanning confocal microscopy, mass spectrometry, and ion selective electrode technique. Different ions are demonstrated to infiltrate through the entire depth of the enamel layer (~1 mm), which is significantly enhanced penetration compared with diffusion-based infiltration. Meanwhile, transport depth and speed can be controlled by infiltration time and applied voltage. This is the first demonstration of reliably delivering both anions and cations into the enamel nanopores. This technique opens opportunities in caries prevention, remineralization, tooth whitening, and nanomedicine delivery in clinical dentistry, as well as other delivery challenges into various biomaterials such as bones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app