Add like
Add dislike
Add to saved papers

Targeted Co-Delivery of the Iron Chelator Deferoxamine and a HIF1α Inhibitor Impairs Pancreatic Tumor Growth.

ACS Nano 2019 January 25
Rapidly growing cancer cells exhibit a strong dependence on iron for their survival. Thus, iron-removing drugs, iron chelators, have potential applications in cancer treatment. Deferoxamine (DFO) is an efficient iron chelator, but its short circulation half-life and ability to induce hypox-ia-inducible factor 1α (HIF1α) overexpression restricts its use as an antitumor agent. In the present study, we first found that a pattern of iron-related protein expression favoring higher intracellular iron closely correlates with shorter overall and relapse-free survival in pancreatic cancer patients. We subsequently found that a combination of DFO and the HIF1α inhibitor, Lificiguat (also named YC1), significantly enhanced the antitumor efficacy of DFO in vitro. We then employed transferrin receptor 1 (TFR1)-targeting liposomes to co-deliver DFO and YC1 to pancreatic tumors in a mouse model. The encapsulation of DFO prolonged its circulation time, improved its accumulation in tumor tissues via the enhanced permeability and retention (EPR) effect and facilitated efficient uptake by cancer cells, which express high level of TFR1. After entering the tumor cells, the encapsulated DFO and YC1 were released to elicit a synergistic antitumor effect in subcutaneous and orthotopic pancreatic cancer xenografts. In summary, our work overcame two major obstacles in DFO-based cancer treatment through a simple liposome-based drug delivery system. This nanoencapsulation and targeting paradigm lays the foundation for future application of iron chelation in cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app