Add like
Add dislike
Add to saved papers

Importance of Experimental Environmental Conditions in Estimating Risks and Associated Uncertainty of Transgenic Fish Prior to Entry into Nature.

Scientific Reports 2019 January 24
Salmonids show a high degree of phenotypic plasticity that can differ among genotypes, and this variation is one of the major factors contributing to uncertainty in extrapolating laboratory-based risk assessment data to nature. Many studies have examined the relative growth and survival of transgenic and non-transgenic salmonids, and the results have been highly variable due to genotype × environment interactions. The relative survival of fast- and slow-growing strains can reverse depending on the environment, but it is not clear which specific environmental characteristics are driving these responses. To address this question, two experiments were designed where environmental conditions were varied to investigate the contribution of rearing density, food amount, food type, habitat complexity, and risk of predation on relative growth and survival of fast-growing transgenic and slow-growing wild-type coho salmon. The first experiment altered density (high vs. low) and food amount (high vs. low). Density impacted the relative growth of the genotypes, where transgenic fish grew more than non-transgenic fish in low density streams, regardless of food level. Density also affected survival, with high density causing increased mortality for both genotypes, but the mortality of transgenic relative to non-transgenic fish was lower within the high-density streams, regardless of food level. The second experiment altered habitat complexity (simple vs. complex), food type (artificial vs. natural), amount of food (normal vs. satiation), and risk of predation (present vs. absent). Results from this experiment showed that genotype affected growth and survival, but genotype effects were modulated by one or more environmental factors. The effect of genotype on survival was influenced by all examined environmental factors, such that no predictable trend in relative survival of transgenic versus non-transgenic fry emerged. This was primarily due to variations in survival of non-transgenic fish under different environmental conditions (non-transgenic fry had highest survival in hatchery conditions, and lowest survival in complex conditions with natural food fed at a normal level with or without predators). Transgenic fry survival was only significantly influenced by predator presence. The effects of genotype on mass and length were significantly modulated by food type only. Transgenic fry were able to gain a large size advantage over non-transgenic fish when fed artificial food under all habitat types. These experiments support the observations of dynamic responses in growth and survival depending on the environment, and demonstrate the challenge of applying laboratory-based experiments to risk assessment in nature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app