JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human Multipotent Stromal Cell Secreted Effectors Accelerate Islet Regeneration.

Stem Cells 2019 April
Human multipotent stromal cells (hMSC) can induce islet regeneration after transplantation via the secretion of proteins that establish an islet regenerative niche. However, the identity of hMSC-secreted signals and the mechanisms by which pancreatic islet regeneration is induced remain unknown. Recently, mammalian pancreatic α-cells have been shown to possess considerable plasticity, and differentiate into β-like cells after near complete β-cell loss or overexpression of key transcriptional regulators. These studies have generated new excitement that islet regeneration during diabetes may be possible if we can identify clinically applicable stimuli to modulate these key regulatory pathways. Herein, we demonstrate that intrapancreatic-injection of concentrated hMSC-conditioned media (CM) stimulated islet regeneration without requiring cell transfer. hMSC CM-injection significantly reduced hyperglycemia, increased circulating serum insulin concentration, and improved glucose tolerance in streptozotocin-treated mice. The rate and extent of endogenous β-cell mass recovery was dependent on total protein dose administered and was further augmented by the activation of Wnt-signaling using GSK3-inhibition during CM generation. Intrapancreatic hMSC CM-injection immediately set in motion a cascade of regenerative events that included the emergence of proliferating insulin+ clusters adjacent to ducts, NKX6.1 expression in glucagon+ cells at days 1-4 suggesting the acquisition of β-cell phenotype by α-cells, and accelerated β-cell maturation with increased MAFA-expression for >1 month postinjection. Discovery and validation of islet regenerative hMSC-secreted protein may lead to the development of cell-free regenerative therapies able to tip the balance in favor of β-cell regeneration versus destruction during diabetes. Stem Cells 2019;37:516-528.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app