Add like
Add dislike
Add to saved papers

A linear pathway for mevalonate production supports growth of Thermococcus kodakarensis.

The sole unifying feature of Archaea is the use of isoprenoid-based glycerol lipid ethers to compose cellular membranes. The branched hydrocarbon tails of archaeal lipids are synthesized via the polymerization of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), but many questions still surround the pathway(s) that result in production of IPP and DMAPP in archaeal species. Isotopic-labeling strategies argue for multiple biological routes for production of mevalonate, but biochemical and bioinformatic studies support only a linear pathway for mevalonate production. Here, we use a combination of genetic and biochemical assays to detail the production of mevalonate in the model archaeon Thermococcus kodakarensis. We demonstrate that a single, linear pathway to mevalonate biosynthesis is essential and that alternative routes of mevalonate production, if present, are not biologically sufficient to support growth in the absence of the classical mevalonate pathway resulting in IPP production from acetyl-CoA. Archaeal species provide an ideal platform for production of high-value isoprenoids in large quantities, and the results obtained provide avenues to further increase the production of mevalonate to drive isoprenoid production in archaeal hosts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app