Add like
Add dislike
Add to saved papers

MicroRNA 494 increases chemosensitivity to doxorubicin in gastric cancer cells by targeting phosphodiesterases 4D.

Acquired drug resistance is one of the main limitations in pharmacological therapy of malignancies including gastric cancer. MicroRNAs (miRNAs) are a class of small noncoding RNAs that suppress their targets by binding to the 3'UTR region of genes. In this study, we explored investigate the target gene of miR-494 and its roles in chemoresistance of gastric cancer. We found that miR-494 was significantly down-regulated in gastric cancer cells lines compared to the normal gastric epithelial cell line. Exogenous overexpression of miR-494 increased the chemosensitivity of gastric cancer cells to doxorubicin. Moreover, miR-494 expression was reduced in a doxorubicin-resistant gastric cancer cells (AGS/dox) compared with the parental cells. MTT assay showed that AGS/dox cells exhibited an elevated viability compared with the parental cells. Enforced expression of miR-494 inhibited AGS/dox cell viability and colony formation ability. In addition, we demonstrated that elevated expression of miR-494 inhibited the mRNA and protein expression of phosphodiesterases 4D (PDE4D) in gastric cancer cell. Luciferase assay showed that miR-494 directly targeted the 3'UTR region of PDE4D. Furthermore, restoration of PDE4D recovered the chemoresistance in miR-494-overexpressed gastric cancer cells. Taken together, this study demonstrated that miR-494 enhanced doxorubicin sensitivity via regulation of PDE4D expression, suggesting a novel therapeutic strategy for anti-chemoresistance in gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app