Add like
Add dislike
Add to saved papers

Quantitative CT-based bone strength parameters for the prediction of novel spinal implant stability using resonance frequency analysis: a cadaveric study involving experimental micro-CT and clinical multislice CT.

BACKGROUND: To predict conventional test forces (peak torque and pull-out force) and a new test force (implant stability quotient [ISQ] value of a spinal pedicle screw) from computed tomography (CT) parameters, including micro-architectural parameters, using high-resolution micro-CT and clinical multislice CT (MSCT) in human cadaveric vertebrae.

METHODS: Micro-CT scans before/after screw insertion (n = 68) and MSCT scans before screw insertion (n = 58) of human cadaveric vertebrae were assessed for conventional test forces and ISQ value. Three-dimensional volume position adjustment between pre-insertion micro-CT and MSCT scans and post-insertion scans (micro-CT) was performed to extract the volume of the cancellous bone surrounding the pedicle screw. The following volume bone mineral density and micro-architectural parameters were calculated: bone volume fraction, bone surface density (bone surface/total volume (BS/TV)), trabecular thickness, trabecular separation, trabecular number, structure model index, and number of nodes (branch points) of the cancellous bone network/total volume (NNd/TV) using Spearman's rank correlation coefficient with Bonferroni correction.

RESULTS: Conventional test forces showed the strongest correlation with BS/TV: peak torque, ρ = 0.811, p = 4.96 × 10-17 (micro-CT) and ρ = 0.730, p = 7.87 × 10-11 (MSCT); pull-out force, ρ = 0.730, p = 1.64 × 10-12 (micro-CT) and ρ = 0.693, p = 1.64 × 10-9 (MSCT). ISQ value showed the strongest correlation with NNd/TV: ρ = 0.607, p = 4.01 × 10-8 (micro-CT) and ρ = 0.515, p = 3.52 × 10-5 (MSCT).

CONCLUSIONS: Test forces, including the ISQ value, can be predicted using micro-CT and MSCT parameters. This is useful for establishing a preoperative fixation strength evaluation system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app