Add like
Add dislike
Add to saved papers

Drosophila Mediator subunit Med1 is required for GATA-dependent developmental processes: divergent binding interfaces for conserved coactivator functions.

DNA-bound transcription factors (TFs) governing developmental gene regulation have been proposed to recruit Polymerase II machinery at gene promoters through specific interactions with dedicated subunits of the evolutionarily-conserved Mediator complex (MED). However, whether such MED subunit specific functions and partnerships have been conserved during evolution has been poorly investigated. To address this issue, we generated the first Drosophila loss-of-function mutants for Med1, known as a specific cofactor for GATA TFs and hormone nuclear receptors in mammals. We show that Med1 is required for cell proliferation, and hematopoietic differentiation depending on the GATA TF Serpent (Srp). Med1 binds physically Srp in cultured cells and in vitro through its conserved GATA Zinc Finger DNA-binding domain and the divergent Med1 C-terminal. Interestingly, GATA/Srp interaction occurs through the longest Med1 isoform, suggesting a functional diversity of MED complex populations. Furthermore, we show that Med1 acts as a coactivator for the GATA factor Pannier during thoracic development. In conclusion, the Med1 requirement for GATA-dependent regulatory processes is a common feature in insects and mammals, although binding interfaces have diverged. Further work in Drosophila should bring valuable insights to fully understand GATA-MED functional partnerships, which probably involve other MED subunits depending on the cellular context.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app