Add like
Add dislike
Add to saved papers

Spectroscopic and computational insights into theophylline/β-cyclodextrin complexation: inclusion accomplished by diverse methods.

Current scenario in asthmatic prevalence worldwide calls for a facile, cost-effective, and energy efficient methodology to formulate the potent bronchodilator, theophylline (THP), into an effective dosage forms. Since the uses of THP are severely impeded by its poor aqueous solubility and low bioavailability, solid inclusion complexes (ICs) of THP in β-cyclodextrin (β-CD) were prepared to overcome the limitations. The ICs were developed by conventional methods and also by microwave irradiation method, which is environmentally more benign and requires lesser reaction time. The complexation phenomenon was effectual by the co-precipitation, freeze-drying, and microwave methods as affirmed from various spectroscopic analyses. 1 H NMR and molecular docking studies illustrated the total inclusion of THP into β-CD cavity. Better efficacy of the microwaved product was witnessed in terms of drug content, dissolution, and anti-biofilm activities. Thus microwave irradiation can be utilised as a naive and economical methodology to design β-CD-THP dosage formulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app