Add like
Add dislike
Add to saved papers

MRI response of obturator internus muscle to carbon-ion dose in prostate cancer treatment.

It is important to confirm the dose distribution and its biophysiological response in patients subjected to carbon-ion radiotherapy (CIRT) by using medical imaging methods. In this study, the correlation between the signal intensity changes of muscles observed in magnetic resonance imaging (MRI) after CIRT and planned dose distribution was evaluated. Seven patients were arbitrarily selected from among localized prostate cancer patients on whom CIRT was performed in our facilities in 2010. All subjects received the same dose of CIRT, namely, 57.6 Gy relative biological effectiveness (RBE) in 16 fractions. The following two types of images were acquired for each subject: planning computed tomography (CT) images overlaying the dose distribution of CIRT and MRI T2-weighted images (T2WI) taken 1 year after CIRT. The fusion image of the planning CT and MRI images was registered by using a treatment-planning system, and the CIRT dose distribution was compared with changes observed in the MRI of the obturator internus muscles located near the prostate. The signal changes in the axial image passing through the isocenter of the planning target volume were digitized, and a scatter diagram was created showing the relationship between the radiation dose and digitized signal changes. A strong correlation between the radiation dose and the MRI signal intensity changes was observed, and a quadratic function was found to have the best fit. However, estimating the dose distribution from the normalized MRI signal intensity is difficult at this point, owing to the wide variation. Therefore, further investigation is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app