Add like
Add dislike
Add to saved papers

Pulmonary smooth muscle in vertebrates: A comparative review of the structure and function.

Although the airways of vertebrates are diverse in shape, complexity, and function, they all contain visceral smooth muscle. The morphology, function, and innervation of this tissue in airways is reviewed in actinopterygians, lungfish, amphibians, non-avian reptiles, birds, and mammals. Smooth muscle was likely involved in tension regulation ancestrally, and may serve to assist lung emptying in fishes and aquatic amphibians, as well as maintain internal lung structure. In certain non-avian reptiles and anurans antagonistic smooth muscle fibers may contribute to intrapulmonary gas mixing. In mammals and birds, smooth muscle regulates airway caliber, and may be important in controlling the distribution of ventilation at rest and exercise, or during thermoregulatory and vocal hyperventilation. Airway smooth muscle is controlled by the autonomic nervous system: cranial cholinergic innervation generally causes excitation, cranial non-adrenergic, non-cholinergic (NANC) innervation causes inhibition, and spinal adrenergic (SA) input causes species-specific, often heterogenous contractions and relaxations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app