Add like
Add dislike
Add to saved papers

Chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and nonalcoholic steatohepatitis via angiogenesis rather than endoplasmic reticulum stress.

In the present study, we aimed to investigate the role of endoplasmic reticulum stress (ERS) and its related inflammation and angiogenesis in liver fibrosis in a rat model of combined hypoxia and nonalcoholic steatohepatitis (NASH) and to confirm whether the intervention of hypoxia-inducible factor 1α (HIF1α) can improve fibrosis. Liver histological changes and biochemical indices, HIF1α, inflammatory factors, ERS-related parameters (GRP78, CHOP, caspase-3, and caspase-12), and angiogenesis indices (VEGFA, VEGFR2, and CD34) were evaluated. Compared with the control rats, the liver tissue of rats with hypoxia and NASH had obvious NASH characteristics and hepatic fibrosis was significantly aggravated, including bridging fibrosis in some rats. The mRNA expression levels of HIF1α, VEGFA, and VEGFR2 and total immunohistochemical staining scores of VEGFR2 and CD34 were significantly increased. In addition, HIF1α silencing significantly decreased HIF1α, biochemical indices (ALT, AST, and TG), inflammatory factors (TNFα, IL6, and IL1β), and angiogenesis indices (CD34 and VEGFR2), consequently, improved the hepatic fibrosis score in the rat model of combined hypoxia and NASH. Taken together, chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and NASH via angiogenesis rather than ERS and HIF1α intervention can improve liver fibrosis, angiogenesis, inflammatory factors, and biochemical indices. Therefore, HIF1α is a key regulatory factor of liver fibrosis in rats with combined hypoxia and NASH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app