Add like
Add dislike
Add to saved papers

Tandem synthesis of 4-aminoxanthones is controlled by a water-assisted tautomerization: a general straightforward reaction.

Aminoxanthones constitute a group of therapeutically promising compounds that so far have been synthetically challenging. Here, we report the synthesis of both aminodihydroxanthones and fully aromatized aminoxanthones by an easy to perform, one-step multicomponent reaction of isocyanides, 3-carbonylchromones and dienophiles. The mechanism of the reaction involves a sequence of a [4 + 1] cycloaddition, iminolactone-aminofuran tautomerization, [4 + 2] cycloaddition, oxygen ring opening and aromatization. Remarkably, DFT quantum chemical computations revealed that the iminolactone-aminofuran tautomerization requires the assistance of a water molecule and, contrary to intuition, it is the rate-determining step. Conversely, both the [4 + 1] and the [4 + 2] cycloadditions have relatively low calculated energy barriers, regardless the substituents on the starting materials. Thus, we have stablished a straightforward and a wide-ranging synthesis of diversely substituted xanthones. This highly convergent process has also been applied to the synthesis of biologically important chromenophenantridines and secalonic acid related xanthone dimers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app