Add like
Add dislike
Add to saved papers

Uptake and intracellular fate of biocompatible nanocarriers in cycling and noncycling cells.

Nanomedicine 2019 January 23
AIM: To elucidate whether different cytokinetic features (i.e., presence or absence of mitotic activity) may influence cell uptake and distribution of nanocarriers, in vitro tests on liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were carried out on C2C12 murine muscle cells either able to proliferate as myoblasts (cycling cells) or terminally differentiate into myotubes (noncycling cells).

MATERIALS & METHODS: Cell uptake and intracellular fate of liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were investigated by confocal fluorescence microscopy and transmission electron microscopy.

RESULTS: Nanocarrier internalization and distribution were similar in myoblasts and myotubes; however, myotubes demonstrated a lower uptake capability.

CONCLUSION: All nanocarriers proved to be suitably biocompatible for both myoblasts and myotubes. The lower uptake capability of myotubes is probably due to different plasma membrane composition related to the differentiation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app