Add like
Add dislike
Add to saved papers

A Sensitivity Analysis Approach for Informative Dropout using Shared Parameter Models.

Biometrics 2019 January 23
Shared parameter models (SPMs) are a useful approach to addressing bias from informative dropout in longitudinal studies. In SPMs it is typically assumed that the longitudinal outcome process and the dropout time are independent, given random effects and observed covariates. However, this conditional independence assumption is unverifiable. Currently, sensitivity analysis strategies for this unverifiable assumption of SPMs are underdeveloped. In principle, parameters that can and cannot be identified by the observed data should be clearly separated in sensitivity analyses, and sensitivity parameters should not influence the model fit to the observed data. For SPMs this is difficult because it is not clear how to separate the observed data likelihood from the distribution of the missing data given the observed data (i.e., 'extrapolation distribution'). In this paper, we propose a new approach for transparent sensitivity analyses for informative dropout that separates the observed data likelihood and the extrapolation distribution, using a typical SPM as a working model for the complete data generating mechanism. For this model, the default extrapolation distribution is a skew-normal distribution (i.e., it is available in a closed form). We propose anchoring the sensitivity analysis on the default extrapolation distribution under the specified SPM and calibrate the sensitivity parameters using the observed data for subjects who drop out. The proposed approach is used to address informative dropout in the HIV Epidemiology Research Study. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app