Add like
Add dislike
Add to saved papers

Thermodynamics of NaHCO 3 decomposition during Na 2 CO 3 -based CO 2 capture.

Amine-basedcarbon-capture technologies have been shown to be energetically expensive and to cause significant environmental and epidemiological impacts due to their volatility. Bicarbonate formation from carbon dioxide's reaction with water has been suggested as an effective alternative for capturing CO2 ; however, the thermodynamics of this reaction are not well understood. This study experimentally determined the equilibrium constant of sodium bicarbonate (NaHCO3 ) decomposition to sodium, water, and carbon dioxide; the study also compared the equilibrium constant to theoretical calculations. Using a combination of experimentation and thermodynamic relationships, the unitless equilibrium constants of the forward and reverse reactions were calculated accurately (error <±9% and <±4%, respectively). Equilibrium data were calculated using enthalpy and entropy values of each component of NaHCO3 decomposition at temperatures ranging from 25 to 155°C respectively. These results offer more data essential to optimizing NaHCO3 use in environmentally friendly next-generation CO2 -capture technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app