Add like
Add dislike
Add to saved papers

Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge.

Quorum sensing (QS) regulation of the composition of ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) communities and functions in wastewater treatment was investigated. Specifically, we explored the role of N-acyl-l-homoserine lactones (AHLs) in microbial community dynamics in activated sludge. On average, the specific ammonia-oxidising-rate increased from 1.6 to 2.8 mg NH4 + -N/g MLSS/hr after treatment with long-chain AHLs for 16 days, and the addition of AHLs to sludge resulted in an increased number of AOA/AOB amoA genes. Significant differences were observed in the AOA communities of control and AHL-treated cultures, but not the AOB community. Furthermore, the dominant functional AOA strains of the Crenarchaeota altered their ecological niche in response to AHL addition. These results provide evidence that AHLs play an important role in mediating AOA/AOB microbial community parameters and demonstrate the potential for application of QS to the regulation of nitrogen compound metabolism in wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app