Add like
Add dislike
Add to saved papers

Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.

Gait classification has been widely used for children with cerebral palsy (CP) to assist with clinical decision making and to evaluate different treatment outcomes. The aim of this study was to evaluate supervised machine learning algorithms in the classification of sagittal gait patterns for CP children with spastic diplegia. Gait parameters were extracted from gait data obtained from two hundred children with spastic diplegia CP, and were used to represent the key kinematic features of each individual's gait. Seven supervised machine learning algorithms including an artificial neural network (ANN), discriminant analysis, naive Bayes, decision tree, k-nearest neighbors (KNN), support vector machine (SVM), and random forest were compared by constructing a gait classification system based on the same gait data. The performance of these algorithms was then evaluated using a standard 10-fold cross-validation procedure. The results show that the ANN has the best prediction accuracy (93.5%) with a low resubstitution error (5.8%), high specificity (>0.93) and high sensitivity (>0.92). The decision tree algorithm, SVM, and random forest approaches also have high prediction accuracy (>77.9%) with low resubstitution error (<14.3%), moderate specificity (>0.5) and moderate sensitivity (>0.2). The discriminant analysis, naive Bayes and KNN methods have relatively poor classification performance. Given these results for classification performance and prediction accuracy, the ANN is a good candidate for gait classifications for CP children with spastic diplegia. The decision tree is also attractive for clinical applications due to its transparency. Supervised machine learning algorithms can potentially be integrated into an expert gait analysis system that can interpret gait data and automatically generate high-quality analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app