Add like
Add dislike
Add to saved papers

Pulmonary effects of nanofibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses.

We studied if the pulmonary and systemic toxicity of nanofibrillated celluloses can be reduced by carboxylation. Nanofibrillated celluloses administered at 6 or 18 μg to mice by intratracheal instillation were: 1) FINE NFC, 2-20 μm in length, 2-15 nm in width, 2) AS (-COOH), carboxylated, 0.5-10 μm in length, 4-10 nm in width, containing the biocide BIM MC4901 and 3) BIOCID FINE NFC: as (1) but containing BIM MC4901. FINE NFC administration increased neutrophil influx in BAL and induced SAA3 in plasma. AS (-COOH) produced lower neutrophil influx and systemic SAA3 levels than FINE NFC. Results obtained with BIOCID FINE NFC suggested that BIM MC4901 biocide did not explain the lowered response. Increased DNA damage levels were observed across materials, doses and time points. In conclusion, carboxylation of nanofibrillated cellulose was associated with reduced pulmonary and systemic toxicity, suggesting involvement of OH groups in the inflammatory and acute phase responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app