JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Zymosan by-passes the requirement for pulmonary antigen encounter in lung tissue-resident memory CD8 + T cell development.

Tissue-resident memory T cells (Trm) in the lung provide a frontline defence against respiratory pathogens. Vaccination models that lodge CD8+ Trm populations in the lung have been developed, all of which incorporate the local delivery of antigen plus adjuvant into the airways; a necessary approach as local cognate antigen recognition is required for optimal lung Trm development. Although pulmonary delivery of antigen is important for lung Trm development, the impact the co-administered adjuvant has on Trm differentiation is unclear. We show that while altering the adjuvant co-administered with the pulmonary delivered antigen does not impact the size of the lung Trm population, a particular adjuvant, zymosan, when administered into the airways without antigen can drive effector CD8+ T cells to differentiate into lung Trm. Zymosan signalling via dectin-1 receptor was sufficient to promote antigen-independent lung Trm development. When combined with an injectable influenza vaccination regime, intranasal zymosan delivery significantly boosted the size of the influenza virus-specific lung Trm population. Our results highlight that eliciting the appropriate local inflammatory milieu can by-pass the requirement for local antigen recognition in lung Trm development and emphasises that the appropriate selection of adjuvant can greatly improve vaccines that aim to elicit pulmonary Trm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app