Add like
Add dislike
Add to saved papers

Toxic effects of combined treatment of 1,2-dichloroethane and ethanol on mouse brain and the related mechanisms.

The aim of this study was to explore the mechanisms of brain damage induced by the combined treatment of mice with 1,2-dichloroethane (1,2-DCE) and ethanol. Mice were divided into control group; 1,2-DCE-intoxicated group; ethanol-treated group; and low-, medium-, and high-dose combined treatment groups. Histological observations along with brain organ coefficients and water content were used to measure the brain damage directly and indirectly. The levels of nonprotein sulfhydryls, malondialdehyde (MDA), and superoxide dismutase activity were used as parameters to evaluate oxidative stress in the brain. Protein and messenger RNA (mRNA) levels of cytochrome P450 2E1 (CYP2E1), zonula occludens-1 (occludin and zo-1), aquaporin-4 (AQP4), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase (HO)-1, and the γ-glutamyl cysteine synthetase catalytic and modulatory subunits (γ-GCSc, GR, and γ-GCSm) in the brain were examined by Western blot analysis and quantitative polymerase chain reaction analysis, respectively. Effects of the combined treatment of 1,2-DCE and ethanol were evaluated by analysis of variance with a factorial design. The results suggested that combined exposure to ethanol and 1,2-DCE synergistically increased CYP2E1 protein and mRNA levels, accelerated the metabolism of ethanol and 1,2-DCE in the brain tissue, induced high production of reactive oxygen species (ROS), and increased MDA levels, thereby damaging the blood-brain barrier and causing obvious pathological changes in brain tissue. However, the increased level of ROS activated the Nrf2 signal transduction pathway, promoting the expression of HO-1 and glutathione-related antioxidant enzymes in the brain to protect the cells from oxidative damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app