Add like
Add dislike
Add to saved papers

Spin-filtering and tunneling magnetoresistance effects in 6,6,12-graphyne-based molecular magnetic tunnel junctions.

In the present study, by cutting 6,6,12-graphyne along vertical and horizontal directions, two kinds of 6,6,12-graphyne nanodots (6,6,12-GYNDs) with different sizes are obtained. Using these 6,6,12-GYNDs, we theoretically designed two kinds of 6,6,12-graphyne-based molecular magnetic tunnel junctions (MMTJs) and investigated their spin-dependent transport properties. Depending on the orientation of the 6,6,12-GYNDs and the connection of the 6,6,12-GYNDs to electrodes, our results show that the two MMTJs have novel transport behaviors. Two different net spin currents can be obtained by tuning the spin configurations and the maximal order of magnitudes of tunneling magnetoresistance values of the two MMTJs reaches 106%. The high spin-filtering ratio and large tunneling magnetoresistance value provide high sensitivity for practical applications. Therefore, the spin-filtering and tunneling magnetoresistance effects enable 6,6,12-graphyne-based MMTJs to be used as spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app