Add like
Add dislike
Add to saved papers

Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4 /MyD88/NF-κB signal pathway.

Preclinical Research & Development Curcumin has been shown to possess a series of beneficial effects, such as antiinflammatory, antioxidant, analgesic, and promoting healing. However, the effect and relative mechanism of curcumin on knee osteoarthritis (OA) have not been elucidated. The aim of this study is to explore the protective effect of curcumin on monosodium iodoacetate (MIA)-induced OA. Forty-eight rats were randomized into four experimental groups: control group, OA group, OA + PBS group, and OA + curcumin group, respectively. A single intraarticular injection of MIA was applied to establish the rat model of knee OA. Hematoxylin-eosin staining was used to evaluate histological changes of knee joint. The paw withdrawal threshold was collected and the expression of synovial fluid cytokine levels was measured by ELISA. The protein expression of TRL-4, MyD88, p-IκBα, NF-κB, TNF-α, IL-1β, and IL6 was measured by western blot. Treating with curcumin can significantly reduce joint diameter and Mankin's score, and increase the paw withdrawal threshold. The expression of synovial fluid inflammatory biomarkers, IL-6, IL-1β, and TNF-α in the OA + curcumin group were lower than that in OA and OA + PBS group. The protein expression of the TLR4 receptor was increased in the OA, OA + PBS, and OA + curcumin group compared to the control group. However, curcumin treatment can significantly decrease the expression of MyD88, p-IκBα, NF-κB, TNF-α, IL-1β, and IL6 in OA + curcumin group. These findings may indicate that curcumin could block TLR4/NF-κB signal pathway, and reduce inflammation level to prevent knee wound in OA rats. Curcumin may be a feasible kind of medicament in the treatment of knee OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app