Add like
Add dislike
Add to saved papers

Role of NF-κB activation in mouse bone marrow stromal cells exposed to 900 MHz radiofrequency fields (RF).

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a primary transcription factor which plays a key role in several cellular processes including proliferation and survival. It is well-known that exposure to non-ionizing radiofrequency fields (RF), which are ubiquitous, interact with cellular components. The aim of the study was thus to examine whether exposure of mouse bone marrow stromal cells (BMSC) to RF also resulted in cellular interactions. BMSC were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 4 hr/day for 5 consecutive days. The relative protein expression levels of NF-κB in the cytoplasm and nucleus of RF-exposed cells were compared to non-RF-exposed controls. At 30 min post-RF exposure a significant decrease in protein expression of NF-κB in the cytoplasm was accompanied by a concomitant increase in nuclear NF-κB protein expression levels. Similar responses were noted in the cytoplasm and nuclear NF-κB levels at 2 hr with a return to control concentrations in primary transcription factor at 24 hr post-RF treatment. Daily incubation of BAY 11-7082 an inhibitor of NF-κB for 90 min for 5 days followed by RF each day prevented the fall in cytoplasmic NF-κB and rise in nuclear primary transcription factor at 30 min and 2 hr. There were no marked alterations at 24 hr. Data showed that the effects of RF treatment on BMSC involved transient activation of NF-κB which may be attributed to RF-mediated cellular perturbation as evidenced by consequences of BAY 11-7082 inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app