Add like
Add dislike
Add to saved papers

Topology of TROL protein in thylakoid membranes of Arabidopsis thaliana.

Physiologia Plantarum 2019 January 21
TROL (thylakoid rhodanase-like protein) is a nuclear-encoded protein of thylakoid membranes required for tethering of FNR (ferredoxin:NADPH oxydoreductase). It has been proposed that the dynamic interaction of TROL with flavoenzyme FNR, influenced by environmental light conditions, regulates the fate of photosynthetic electrons, directing them either to NADPH synthesis or to other acceptors, including ROS detoxification pathways. Inside the chloroplasts, TROL has a dual localization: as inner membrane precursor form and a thylakoid membrane mature form, which has been confirmed by several large-scale chloroplast proteomics studies, as well as protein import experiments. Unlike the localization, the topology of TROL in the membranes, which is a prerequisite for further studies of its properties and function, has not been experimentally confirmed yet. Thermolysin was proven to be a valuable protease to probe the surface of chloroplasts and membranes in general. By treating the total chloroplast membranes using increasing protease concentration, sequential degradation of TROL was observed, indicating protected polypeptides of TROL and possible domain orientation. To further substantiate the obtained results, TROL-overexpressing Arabidopsis line (OX) and line in which the central rhodanase domain (RHO) has been partially deleted (ΔRHO), were used as well. While OX line showed the same degradation pattern of TROL as the wild type, surprisingly, TROL from ΔRHO membranes was not detectable even at the lowest protease concentration applied, indicating the importance of this domain to the integrity of TROL. In conclusion, TROL is a polytopic protein with a stroma-exposed C-terminal FNR-binding region, and the thylakoid lumen-located RHO domain. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app