Add like
Add dislike
Add to saved papers

Influence of Continuous Training on Atrial Myocytes I K1 and I KAch and on Induction of Atrial Fibrillation in a Rabbit Model.

Background: Elucidation of mechanisms underlying continuous training-related atrial fibrillation (AF) may inform formulation of novel therapeutic approaches and training method selection. This study was aimed at assessing mechanisms underlying continuous training-induced AF in an animal model.

Methods: Healthy New Zealand rabbits were divided into three groups ( n =8 each), namely, control (C), and moderate intensity (M), and high intensity (H) continuous training according to treadmill speed. Atrial size andintrinsic and resting heart rates were measured by transthoracic echocardiography before, and 8 and 12 weeks after training. Using a Langendorff perfusion system, AF was induced by S1S2 stimulation and the induction rate was recorded. Atrial IK1 and IKAch ion current densities were recorded using whole-cell patch-clamp technique in isolated atrial myocytes. Changes in atrial Kir2.1, Kir2.2, Kir3.1, and Kir3.4 mRNA expression were assessed by reverse transcriptase-coupled polymerase chain reaction.

Results: After 8 and 12 weeks, Groups M and H vs. Group C had greater (all P < 0.05) atrial anteroposterior diameter; greater incidence of AF (60% and 90% vs. 45%, respectively; P < 0.05, also between Groups H and M); and greater atrial IKAch current density. In Group H, Kir2.1 and Kir2.2 mRNA expression in the left and right atria was increased ( P < 0.05, vs. Groups C and M) as was left atrial Kir3.1 and Kir3.4 mRNA expression ( P < 0.05, vs. Group C).

Conclusion: In a rabbit model, continuous training enlarges atrial diameter leading to atrial structural and electrical remodeling and increased AF incidence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app